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Turbomachinery
This paper describes a newly developed streamline curvature throughflow method for the
analysis of radial or mixed flow machines. The code includes curved walls, curved lead-
ing and trailing edges, and internal blade row calculating stations. A general method of
specifying the empirical data provides separate treatment of blockage, losses, and devia-
tion. Incompressible and compressible fluids are allowed, including real gases and su-
personic relative flow in blade rows. The paper describes some new aspects of the code.
In particular, a relatively simple numerical model for spanwise mixing is derived; the
calculation method for prescribed pressure ratio in compressor blade rows is described;
and the method used to redistribute the flow across the span due to choking is given.
Examples are given of the use and validation of the code for many types of radial
turbomachinery, and these show that it is an excellent tool for preliminary design.
�DOI: 10.1115/1.3151601�
Introduction
In most turbomachinery design systems a meridional through-

ow calculation is the backbone of the design process. It is fast,
eliable, easy to understand, deals easily with multiple blade rows,
nd includes empirical loss, deviation, and blockage correlations.
erformance and experience from earlier machines can then be

aken into account in the preliminary design, in a way which is not
asy with 3D computational fluid dynamics �CFD�.

Most throughflow codes use the streamline curvature method
nd derive from those of Smith �1�, Novak �2�, and Denton �3�,
ased on the general S1/S2 theory of Wu �4�. Other methods of
olving the equations have been looked at �5–8�, but none have
isplaced streamline curvature in practice, as in throughflow
ethods the “accuracy is determined by the accuracy of the cor-

elations rather than the numerics” �quotation from Ref. �3��.
This paper describes a streamline curvature meridional through-

ow method for radial turbomachinery known as VISTA TF. It is a
ompletely new coding of streamline curvature throughflow
heory based on the method of Denton �3� and its adaptation to
adial compressors by Casey and Roth �9�, but with many new
eatures. The streamline curvature approach is used to solve the
hroughflow equations, rather than a more modern numerical tech-
ique, as the theory is easy to understand, being based on the
panwise equilibrium of a circumferentially-averaged flow in an
nnulus. It automatically leads to clearly defined meridional
treamlines, which neatly allow a blade-to-blade and throughflow
iew of the turbomachine for design purposes. In addition it can
e used in a “ductflow” mode, with only leading and trailing
dges of the blade rows defined, which often is an advantage in
he preliminary design phase of multistage axial machines.

There are two main disadvantages of the streamline curvature
echnique. First, it allows no reverse flow in the meridional plane.
owadays, however, issues of flow separation are best resolved
ith a fully viscous 3D CFD solution rather than with a 2D

hroughflow method. It is more important that a throughflow code
dentifies the problem without breaking down, so that appropriate
esign decisions can be made to try to avoid the reverse flow.
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Second, the method suffers from a sharp increase in calculating
time on grids with finely spaced quasi-orthogonal lines owing to
the stability requirements of the streamline curvature calculation
�10�. However, the calculating time of a throughflow code on a
modern laptop for a radial stage is only a few seconds, so this is
also relatively unimportant.

The code described here is primarily designed for single stage
radial turbomachinery applications, but there is no limitation in
the code, which forbids its use for any multistage axial or radial
turbomachinery application. Key features of the code are listed
below.

• Highly curved annulus walls are allowed, providing a
simple definition of axial and radial wall geometries and any
combination of these.

• Any combination of blade row calculating stations, together
with duct flow regions, can be used in the domain allowing
all types of turbomachinery to be calculated.

• Curved quasi-orthogonal lines allow blades with sweep and
curved leading and trailing edges to be modeled.

• Internal blade row calculating stations are used, not just
leading and trailing edges, and blade force terms are in-
cluded to take into account the lean of the blades, whereby
the body force is assumed to act normal to the blade camber
surface.

• A general method of taking into account the spanwise varia-
tion in empirical data for losses, deviation, and blockage has
been programmed, including spanwise distributed blockage
in the continuity equation and the use of entropy loss coef-
ficients and dissipation coefficients.

• Dissipation force terms are used in the radial equilibrium
equation, although this is mainly of academic interest.

• Compressible and incompressible fluids are possible, includ-
ing supersonic relative flow in blade rows.

• Blade row choking is not just included as additional loss,
but its effect on the redistribution of the meridional flow
distribution is taken into account.

• In blade rows with sufficient number of internal planes, an
approximation for the blade-to-blade flow field is calculated,
which includes the effect of splitter vanes.

• Spanwise mixing of angular momentum, total enthalpy, and
entropy across the meridional streamtubes are taken into ac-
count by a new model, which accounts for turbulent diffu-

sion and deterministic secondary flows.
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• The code can operate with specified mass flow, pressure
ratio, or specified outlet swirl.

• A restart from a previously converged solution reduces the
effort for a new calculation with changed geometry or modi-
fied flow parameters and boundary conditions, which is use-
ful in combination with optimization methods.

Some of these features have either been described in earlier
apers on streamline curvature methods, or are relatively straight-
orward extensions of earlier throughflow methods, and so are not
escribed in detail here. This paper provides a general introduc-
ion to the method used and then concentrates on the completely
ew aspects of the models in the code and their implementation.
he new features include the way in which losses are taken into
ccount, the use of the code as a mean-line tool, a built-in simpli-
ed blade-to-blade model with blending functions for the swirl
eneration, a new model for spanwise mixing, iteration to pres-
ure ratio for choked compressor blade rows, redistribution of
ow due to choked streamlines, and inclusion of different fluids.
n addition to describing these new features some details of the
alidation and verification of the code are given.

Streamline Curvature Throughflow

Many publications derive the equations for the streamline cur-
ature throughflow method, so only an overview is given here.
he reader who needs more detail should consult two recent
ooks, which give a thorough discussion of the method, Refs.
11,12�, or refer to the original papers already quoted.

The equations solved are the continuity equation, the energy
quation �a combination of the first law of thermodynamics and
he Euler equation of turbomachinery�, a suitable equation of state
nd the inviscid momentum equation for the flow on the mean
tream surface �in the form of the general radial equilibrium equa-
ion�. The mean stream surface has roughly the form of the blade
amber surface and requires geometrical input and empirical in-
ormation �incidence and deviation� to determine its precise
hape.

The grid for the calculation is based on fixed calculating sta-
ions, which are roughly normal to channel walls, and the stream-
ines of the mean circumferentially-averaged flow in the meridi-
nal direction. The meridional streamline grid is not fixed, apart
rom the hub and shroud streamlines on the annulus walls, but
hanges continually during the iterations. The fixed calculating
tations are oriented with the leading and trailing edges, so need to
e curved if these are curved and can be in duct regions, which is
n the blade-free space upstream and downstream of blades, at the
eading and trailing edges of the blades and internally within the
lades. By suitable combinations of different types of calculating
tations, any type of turbomachine can be modeled. An example
f the grid for a single stage compressor with radial inlet, centrifu-
al impeller, vaneless diffuser, crossover bend, and return channel
ith deswirl vanes is shown in Fig. 1. This is the first stage of a 9

tage multistage radial compressor with 17 blade rows that has
een simulated with this method. The grid density shown in Fig. 1
s typical of that used, with 15 planes for a radial impeller.

The solution method is iterative in terms of several variables
primarily the meridional velocity, but also the density, streamline
ocation, etc.�, all of which progressively converge from an initial
stimate to a final solution within nested iterations. The momen-
um equation on the mean stream surface is a generalized form of
he radial equilibrium equation, developed to give an expression
or the spanwise gradient of the meridional velocity along a cal-
ulating station
31021-2 / Vol. 132, JULY 2010
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+ Fd �1�

The gradient of the meridional velocity is related to the curvature
and the current positions of the streamlines, to the orientation of
the mean stream surface �angles � and ��, and to the flow param-
eters from the previous iteration. There are several forms of this
velocity gradient equation. Equation �1� follows the method of
Denton �3�, but takes into account the blade force terms, as de-
scribed by Cumpsty �11�, and the dissipation force terms, as given
by Horlock �13�, essentially as previously described by Casey and
Roth �9�.

The velocity gradient equation is solved in combination with a
method for finding the correct velocity level on the mean stream-
line that ensures that the flow across the calculating station satis-
fies the continuity equation

ṁ =� k�cm sin �dq �2�

where k is an empirical blockage factor, and � is the angle be-
tween the streamline direction and the calculating station. The
meridional velocity on the mean streamline at each calculating
station is specified in the innermost iteration, integrated across the
flow channel with the help of the velocity gradient, Eq. �1�, and
then continually updated until the mass flow is correct. Care is
needed in this process with transonic flows, as at M =1 there is no
variation in the mass flow with a change in meridional velocity.

The meridional velocity distribution determines the position of
the streamlines of the flow on all calculating stations. These po-
sitions are continually updated for each calculating station in an
outer iteration as the program converges. The streamline positions
are used to interpolate new blade element data appropriate to their
current location and to find the slopes and curvatures of the
streamlines and derivatives of the flow parameters along the
streamlines, which are needed in the velocity gradient equation,
Eq. �1�.

Between blade rows, the total enthalpy and angular momentum
are convected along the meridional streamlines from the previous
station. The entropy would also be convected in an inviscid flow,

Fig. 1 Industrial radial compressor stage showing streamlines
and calculating stations and the meridional velocity
distribution
but the additional viscous losses cause it to increase in the direc-
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ion of the flow. In blade rows the changes in momentum and
nthalpy are calculated from the Euler equation on the assumption
hat the flow follows the mean stream surface. The mean stream
urface is only roughly aligned with the camber surface of the
lade. It points in the true flow direction taking into account the
ncidence and deviation of the flow, using empirical correlations.

The equation of state is best solved in the form of a Mollier
iagram, such as p= f�h ,s�, as the enthalpy is derived from the
uler equation and the entropy from the losses. For liquids and

deal gases analytical equations are used but for real gases inter-
olation in tables is needed.

At the inlet plane the variation of total pressure, total tempera-
ure and angular momentum or flow angle together with the gas
ata are defined. At the outlet plane the mass flow is usually
iven, but for calculations with choked flows it is necessary to
pecify the outlet static pressure, such that the mass flow is a
esult of the simulation.

Empirical Information
Empirical methods are used to provide data for the loss produc-

ion, for the boundary layer blockage and for the deviation of the
ow direction from the mean blade camber surface, so that the
ffect of viscous losses can be taken into account. The three main
ffects of the empirical data are as follows.

• In the equation of state, a change in the entropy through
dissipation losses leads to a pressure loss for a given value
of the total enthalpy.

• In the continuity equation, the blockage due to the endwall
boundary layer displacement thickness leads to a higher
value of the meridional velocity.

• In the momentum equation, the deviation of the flow from
the blade camber direction changes the mean stream surface
and the swirl velocity.

There are numerous possible combinations of data for the em-
irical information, based on various definitions of loss coeffi-
ients, dissipation coefficients, and efficiencies and so on, and this
eads to the largest source of confusion in the data preparation for
ny throughflow code, and many internal branches within typical
odes. In this new code the treatment of the blockage, loss, and
he deviation is separated so that individual correlations for each
ffect can be applied. Where possible the correlations for 2D ef-
ects �such as profile losses� and for 3D effects �endwall and clear-
nce effects� are also separated. Spanwise variations of each of
hese can be specified by the user or determined from built-in
orrelations.

Some aspects of the deviation model will be described in Sec.
. Many throughflow methods work with a fixed value of the
lockage for all streamlines, such that in the flow is considered to
e in a “blocked” channel. In the present method, the blockage
odel includes spanwise distributed blockage, i.e., the value of

he blockage factor k in Eq. �2� can vary across the span.
In the solution of the throughflow equations, a single form of

oss definition based on the entropy rise, following Ref. �14� is
sed, as follows:

�turbine = T1�s2 − s1�/� 1
2c2

2�
�compressor = T1�s2 − s1�/� 1

2c1
2�

his entropy-based loss coefficient is shown by Denton �14� to be
umerically the same as a kinetic energy loss coefficient. It di-
ectly determines the change in entropy, which can be immedi-
tely used in the equation of state and in Eq. �1�. In this way it is
ot only easier to code, but it is also probably a more precise way
f including losses in the calculation. Other more common forms
f loss coefficient, such as the pressure loss coefficients deter-
ined by the many correlations included in the code, first have to
e converted internally to an entropy loss coefficient, using the

ournal of Turbomachinery

aded 28 May 2010 to 128.113.26.88. Redistribution subject to ASME
equations given by Brown �15�, before they can be used by the
code.

In addition to loss coefficients or polytropic efficiency, the code
can calculate the losses from dissipation coefficients, which also
directly predict the entropy increase. A single value of the dissi-
pation coefficient for a calculating station is specified, and this
value is then used to estimate the total rate of entropy production
on the wetted surfaces due to the boundary layer dissipation based
on the integration of

TṠtotal = �cd� w3dA

where w is the local surface relative velocity at the edge of the
boundary layer. In a duct region the integration is carried out on
the hub and casing walls, and in a blade row the integration in-
cludes the dissipation on the suction and pressure surfaces using
the local relative surface velocities. The total entropy production
is then used to determine a mean specific entropy increase from
one calculating station to the next, and this is applied on each
streamline.

As the code allows for liquids, ideal gases, and real gases, some
care is needed in the determination of efficiency from the results,
and aspects of the calculation of efficiency in the code have al-
ready been published in Ref. �16�.

4 Blade-to-Blade Solution
The solution on the mean stream surface provides the flow field

in the meridional plane through the turbomachine, and this needs
to be combined with a blade-to-blade method to find blade surface
velocities. In traditional S1/S2 methods this is done with the help
of an additional S1 blade-to-blade method. The current code in-
cludes blade internal calculating stations and, if sufficient of these
are present to calculate a reasonable estimate of the streamwise
gradient of swirl, then this can be used to estimate the blade-to-
blade loading from the local circumferential blade force, similar to
Ref. �17�, as follows:

−
�p

��
= ��cm�

��rcu�
�m

The method computes the flow based on the geometry of the mean
stream surface. This is not congruent with the mean camber sur-
face, and the differences �due to incidence and deviation� have to
be taken into account by empirical modifications. This is done
with blending functions, which adapt the swirl generation in the
blade row to allow the camber surface to be partly transparent to
the flow, such that the flow angle differs from the blade angle as
outlined by Traupel �18� and used by Casey and Roth �9�. A
similar approach using so-called “departure angles” is described
by Smith �19�.

When calculating radial turbomachinery of high solidity, the
blending functions on the swirl are used in the inlet region, and
the departure angle approach is used in the trailing edge region.
Extensive tests on many different types of blade row have dem-
onstrated that this is the most effective approach in high solidity
blade rows and leads to sensible estimates for the blade-to-blade
loading in the inlet and outlet regions of the blade. The angular
momentum of the flow relative to the blade row is calculated as
follows:

�rwu�i,j = ��in�i,j�rwu�in + ��rcm�i,j tan��i,j� + �te��out�i,j���1 − ��in�i,j�
The actual values of the swirl at inlet and the deviation angle at
outlet �determined by the deviation or slip correlations� need to be
updated in each iteration. The blending functions ��in and �out�
follow the approach of Wilkinson �20�.

Figure 2 shows the predicted suction surface and pressure sur-
face static pressure distribution along the mean meridional stream-
line of a radial impeller, calculated using 3D CFD �ANSYS CFX11�

and the approximate blade-to-blade method. Although the simpli-
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ed method is not perfect, it is clearly sufficiently accurate to
uide the designer to make sensible design decisions about blade
oading distributions.

Spanwise Mixing
A major shortcoming of the basic streamline curvature method

s the neglect of spanwise transport of angular momentum, energy,
nd losses in the direction normal to the streamlines. By defini-
ion, a throughflow code is based on the assumption that the flow
emains in concentric streamtubes as it passes through the turbo-
achine, and no mass transfer occurs across the meridional

treamlines, which are the streamtube boundaries. So for example,
n a duct region of a throughflow calculation enthalpy, angular

omentum �swirl� and entropy are conserved along the stream-
ines.

In reality, there are several mechanisms that lead to an apparent
panwise transport of fluid relative to flow on the mean stream-
ines, as follows:

• twisted blade-to-blade stream surfaces as result of stream-
wise vorticity being shed by the blades �stream surface
twist�

• secondary flows in the endwall boundary layers and in the
blade boundary layers

• wake momentum transport downstream of blade rows
• tip clearance flows with tip clearance vortices
• turbulent diffusion

If realistic loss levels are specified for the end-wall regions, and
panwise mixing is neglected, then unrealistic profiles of the loss
ccur after several blade rows, as there is no mechanism for the
igh losses generated near the end-walls to be mixed out. The
implest approach to deal with this problem is to specify unreal-
stic loss distributions across the span, in order to avoid high
evels in the end-walls. In fact, in preliminary design calculations
t is often adequate to specify a mean-line value of loss and to
ssume that the entropy generated is the same on each stream-
ube. This approximates a complete mixing of the losses across
he span.

More sophisticated methods to include the physics of these
ixing processes have been attempted so that realistic loss distri-

utions can be specified. The common approach is to model the
panwise mixing as a turbulent diffusion, even though some of the
ffects are due to deterministic flow features. Spanwise mixing is
eeded to mix out the high losses close to the endwalls, but the
recise model of how the mixing is included appears not to be
articularly important �21–24�.

The model in this code follows that described by Denton and

ig. 2 Suction and pressure surface static pressure distribu-
ion along the mean meridional streamline of a radial impeller
alculated with 3D CFD „CFX… and with throughflow
irsch �21�. Improvements to this are guided by the turbulent

31021-4 / Vol. 132, JULY 2010
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diffusion model of Lewis �24�. The model assumes that some
proportion of the local flow is spread across the streamlines by
deterministic spanwise flows. In a duct flow, the entropy, angular
momentum �swirl�, and total enthalpy on a particular grid point
are determined mainly by the values on the same streamline at the
upstream station and partly by the values transferred from the
adjacent streamlines. A fraction of the flow �1− f� is convected
along the streamlines and a fraction � 1

2 f� is transferred from each
of the two adjacent streamlines, where f is a mixing factor with a
value less than unity, see Fig. 3.

The value of the convected parameter P is first calculated on
the assumption of no mixing and this is then modified by a small
amount due to mixing as follows:

�Pi,j = �− f�Pi−1,j + �f/2�Pi−1,j+1 + �f/2�Pi−1,j−1

In this way a fraction f of the conserved parameter P diffuses
away from the streamline �actually f /2 to the upper streamline
and f /2 to the lower streamline�, and a fraction f /2 of the values
on the upper and the lower streamlines diffuses to this streamline.
This can also be written in the following form:

�Pi,j = �f/2���Pi−1,j+1 − Pi−1,j� − �Pi−1,j − Pi−1,j−1��

If we write the difference between the parameter P on adjacent
streamlines as

�Pi−1,j+1 = Pi−1,j+1 − Pi−1,j and �Pi−1,j = Pi−1,j − Pi−1,j−1

we obtain

�Pi,j = �f/2���Pi−1,j+1 − �Pi−1,j� �3�

Note that with a positive gradient in P along the calculating sta-
tion, there is a positive contribution to the value from the upper
streamline and a negative contribution from the lower streamline
due to mixing, and if the gradient is constant then this leads to no
change in the parameter P.

This model is very effective in causing mixing as the flow
proceeds downstream, but it has a large drawback as a general
model: If the meridional grid spacing, or the number of stream-
lines, is changed, then a different value of the mixing factor is
needed to produce the same level of spanwise mixing. Denton
suggested simply that a value of f =0.5 should be used to cure any
problems of entropy buildup in multiblade-row calculations. This
disadvantage can be overcome if a turbulent diffusion equation is
used to determine the strength of the mixing factor, as explained
below.

Following the approach of Lewis, we assume that the spanwise
mixing of a parameter P, which may be angular momentum, total
enthalpy, or entropy, is determined by a diffusion equation of the
type

cm

�P

�m
= 	

�2P

�q2

where m is the meridional direction, q is the spanwise direction, P
is the parameter undergoing spanwise mixing, and 	 is a diffusion
coefficient. For simplicity in this model q is taken as the distance

Fig. 3 Mixing factor model proposed by Denton and Hirsch
†21‡
along the quasi-orthogonal rather than the exact spanwise direc-
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ion, although this simplification could easily be removed if nec-
ssary. For a small step along the meridional streamline we obtain
hat the change in the parameter P due to spanwise mixing by
iffusion is given by

�P =
�m

cm
	

�2P

�q2

he second derivative along the calculating station can be written
s

�2P

�q2 =
�

�q
� �P

�q
�

f the gradient of parameter P is constant, then this term is zero
nd no spanwise mixing takes place, as the spanwise transfer due
o diffusion of P from the streamline with the higher value is
ompensated by the spanwise transfer from the adjacent stream-
ine with the lower value.

An approximate value of this second derivative is

�2P

�qi,j
2 =

2

qi,j+1 − qi,j−i
�Pi−1,j+1 − Pi−1,j

qi,j+1 − qi,j
−

Pi−1,j − Pi−1,j−1

qi,j − qi,j−1
�

nd, if the streamlines are evenly spaced, we obtain

qi,j+1 − qi,j−i = 2�qi,j+1 − qi,j� = 2�qi,j − qi,j−1� = 2�qi,j

he second derivative of P can be approximated by

�2P

�qi,j
2 �

1

�qi,j
2 ��Pi−1,j+1 − Pi−1,j� − �Pi−1,j − Pi−1,j−1��

o that we obtain

�2P

�qi,j
2 =

1

�qi,j
2 ��Pi−1,j+1 − �Pi−1,j�

he change in parameter P due to spanwise mixing becomes

�Pi,j =
�mi,j

cm,i,j

	i,j

�qi,j
2 ��Pi−1,j+1 − �Pi−1,j�

his includes a positive contribution transferred from the upper
nd the lower streamtubes and a loss due to diffusion to these
treamtubes. By comparison with Eq. �3�, it can be seen that this
s formally identical to the mixing factor algorithm. This algo-
ithm is equivalent to the solution of the diffusion equation if the
ixing factor is directly related to the physical diffusion coeffi-

ient as follows:

f/2 =
�mi,j

cm,i,j

	i,j

�qi,j
2 �4�

he actual value of the mixing factor f is not a constant but needs
o be changed throughout the flowfield. More diffusion, wider
pacing of the quasi-orthogonals, lower spacing of the stream-
ines, or a lower value of the meridional velocity all require a
igher value of the mixing factor.

Equation �4� can also be written as the product of two dimen-
ionless terms

f/2 = �	i,j/cm,i,j

�qi,j
�	� �qi,j

�mi,j
�

he numerator represents the rate of spread of parameter P across
he streamlines under the influence of diffusivity. The denomina-
or is related to the grid structure, as it is the tangent of the angle
etween adjacent neighboring points and represents the spread of
he grid. In this way it can be seen that the mixing factor needs to
e adjusted to take into account the spread of parameter P relative
o the spread of the grid.

This exposes a clear weakness of the method. If the grid has
ide spacing along the meridional direction together with small

panwise distances between the streamlines, the factor f becomes

ery large. Clearly it is not sensible if this becomes too large. With
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a value of the mixing factor of 0.5, as suggested by Denton, the
algorithm causes the flow on any particular streamline to have the
same influence as that from the adjacent streamlines and more
mixing than this is not really possible across a single streamtube.

A second weakness is that the algorithm as given above only
accounts for changes that take place across a single streamtube. At
high mixing levels or with closely spaced streamlines the next
adjacent streamtubes are also affected by diffusion, so that some
of the conserved parameter on these streamtubes is also trans-
ferred to the streamline under consideration. If we assume a con-
stant grid spacing from streamline to streamline and examine the
contribution to parameter P that is transferred by diffusion from
all adjacent streamlines we obtain the result that this effect dimin-
ishes with the square of the grid spacing, as shown in Eq. �4�
above. Taking into account the effect from all streamtubes gives
additional terms in the mixing algorithm so that the positive con-
tribution from all adjacent streamtubes is

�Pi,j
+ = . . . + �f j+3/18�Pi−1,j+3 + �f j+2/8�Pi−1,j+2 + �f j+1/2�Pi−1,j+1

+ �f j−1/2�Pi−1,j−1 + �f j−2/8�P�i−1,j−2� + �f j−3/18�Pi−1,j−3. . .

The negative contribution that is lost from the local streamline is
given by

�Pi,j
− = �f j + f j/4 + f j/9 + f j/16 + ¯�Pi,j

The maximum value of the infinite series here is such that if no
more than 100% of the local value can be diffused away, this leads
to a maximum value of the mixing factor of

f j = 6/
2 � 0.6

In the current mixing algorithm the first four terms in this series
are taken into account, so a minimum of nine streamlines are
needed if spanwise mixing is used.

The analysis above shows formally that, with the appropriate
coefficients and adjustment to take into account the effect over
several streamtubes, the mixing factor model can be identified
with a turbulent diffusion equation and so can be used to model
this effect by appropriate tuning of the mixing factor. The mixing
factors associated with each individual source of spanwise trans-
port in each streamtube �including turbulent diffusion� can be
combined to obtain the cumulative effects. In practice, the code
makes use of this algorithm, but uses a mixing factor determined
from a user-specified eddy diffusion coefficient from Eq. �4�. In
the interest of simplicity, the actual value of the mixing factor is
calculated separately for each streamline in the flowfield based on
constant values of the diffusion coefficient, and the same value of
f is used to redistribute the parameter P upward and downward to
adjacent streamlines. This approach ensures that the spanwise
mass-averaged values of the parameter P on the calculating sta-
tion are conserved despite the mixing between the streamlines. In
addition, the algorithm takes into account the nonuniform spacing
of the streamlines and the special streamlines close to the wall,
where only one adjacent streamline is present.

The data given by Gallimore �23� and Lewis �24� identify a
physically realistic value for the diffusion coefficient 	, scaled
with the mean meridional velocity and the stage length for axial
turbines and compressors. There is considerable scatter between
different machines and different operating points. A larger value is
needed where spanwise mixing is high due to deterministic effects
�secondary flows, streamsurface twist, etc.�, and a lower value is
required to account for pure turbulent mixing, which is higher in
compressors than in turbines. In the current calculations the actual
value for the mixing coefficient used is based on the numerical
values of Gallimore and Lewis but is scaled by a reference veloc-
ity and the reference diameter of the calculation, as follows:

	 = 0.0001 urefDref �5�

In radial turbomachinery the reference condition is impeller outlet

for compressors and impeller inlet for turbines.
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Downlo
The mixing algorithm has been incorporated to redistribute the
ressure losses generated by the endwall boundary layers, but an
xample of its use for another purpose is shown in Fig. 4. This
hows a simulation of a radial impeller for an ethylene refrigera-
ion application with a cold sidestream. In the calculation with no

ixing the cold �casing� and warm �hub� inlet flows do not mix
hrough the whole compressor and remain stratified to the outlet.
sing the spanwise mixing model with a diffusion coefficient
iven by Eq. �5�, as recommended above, leads to mixing, which
losely matches that of a CFD simulation of this impeller.

Choking
Before discussing how choked flows are calculated three impor-

ant points need to be made. First it should be noted that the
hroughflow method is not particularly well suited for choked
lade rows. The mean stream surface equations average out the
ow in the circumferential direction and are thus not really aware
f any high Mach numbers on the suction surface of blades. In
ddition, any shocks that may be present in turbomachinery flows
re generally not oriented in the circumferential direction, so they
re smeared out in the circumferential averaging of the flow to
etermine the mean stream surface. Nevertheless, despite these
erious limitations an attempt has been made to model choking in
he blade rows so that, in combination with correlations, the maxi-

um flow and the additional losses related to shocks are taken
nto account in the overall predicted performance. In this way the
ode includes aspects of choking that are compatible with the
evel of empiricism of typical 1D calculation methods. This is
seful in a code intended for design purposes, as it identifies chok-
ng problems early in the design process, and aids the understand-
ng of the matching of the blade rows as the rotational speed
aries.

Second, in a fully choked flow it is better to calculate with a
pecified pressure ratio rather than with a specified mass flow.
imulations in which the specified mass flow exceeds the choking
ass flow lead to a physically impossible solution, and there are
any solutions with different pressure ratios available for the

hoking mass flow. Denton �3� explained very briefly how to
olve this problem for turbine blade rows, where choking takes
lace near the trailing edge based on the so-called “target pres-
ure” method, which is also described in more detail by Came
25�. The new code includes these techniques for turbines, but this
as now been extended to compressor applications where choking
ccurs near the leading edge.

Third, choking occurs at the throat between two blades. Al-
hough the throat is generally not a calculating plane of the
hroughflow calculation, it can be used as a virtual plane to assess
hether the streamline concerned is choked and to limit the mass
ow accordingly. A good estimate of the choking flow should
ake use of accurate estimates of the throat areas and throat po-

ition, so the throughflow code needs to be combined with a ge-
metry definition system to ensure that the throats and throat po-
itions are well-defined. This is not a practical limitation, as the
lade geometry data and the channel geometry also have to be

ig. 4 The effect of spanwise mixing on the temperature strati-
cation in a refrigeration impeller with a cold sidestream. Left:
o mixing, middle: mixing „Eq. „5……, and right: 3D CFD.
repared by such a program.
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The choking calculation can be considered to be a straightfor-
ward extension of the simple one-dimensional isentropic flow of a
perfect gas through a stream-tube of varying area. Classical one-
dimensional gas dynamics then determines the mass flow per unit
streamtube area as a function of the Mach number and the maxi-
mum mass flow per unit area at a throat Mach number of unity. In
a throughflow calculation we do not have a one-dimensional flow
but have a series of individual streamtubes across the span. The
choking of each individual streamtube must be analyzed on a
one-dimensional basis, and the maximum possible mass flow for
the calculating station can then be calculated by integrating the
maximum mass flow at each streamtube across the span. In this
process an individual streamtube on a particular station can be
choked, but others are still able to pass more flow so the whole
calculating plane is not yet choked.

Close to the leading edge of a compressor and near to the trail-
ing edge of a turbine the maximum value of the local mass flow
per unit streamtube width is limited by the throat to be

ṁmax,th� = Zo
pt


RTt/�
�� + 1

2
�−��+1�/�2��−1��

The equation for the maximum flow across the calculating station
adjacent to the throat is then determined by integration across the
span as

ṁmax,th =� �kṁmax,th� sin ��dq

At a turbine outlet, the procedure used is similar to that described
by Denton �3� and Came �25�, so this will be described first. They
assumed that the choking of a turbine always occurs at the throat,
which is taken to be close to the turbine trailing edge plane. Their
calculations were generally for axial blade rows without internal
planes, and they assumed that there are no relative total pressure
losses along a streamtube between the turbine leading edge inlet
plane and the turbine throat. In the new code with internal blade
row calculating stations, it is assumed that there are no losses
from the next upstream quasi-orthogonal to the throat. This would
be the leading edge if no internal planes are included. In rotors of
radial turbines and in turbines with a high flare, there may be a
radius change between the stations. This needs to be taken into
account to determine the local relative total pressure and tempera-
ture at the throat. These can be determined from the values at the
upstream calculating plane on the assumption of adiabatic isentro-
pic flow and from the condition that the rothalpy is conserved in
the impeller. For choked turbine outlets the effect of supersonic
deviation needs to be included, and in the throughflow code this
causes the outlet flow angle in supersonic flow to be determined
from the continuity equation rather than from correlations.

Choking at a compressor inlet is more complex as it can occur
through three separate mechanisms, see Ref. �11�. First, if the inlet
flow is subsonic, choking will occur if the Mach number reaches
unity at the throat between the blades. This can occur at subsonic
inlet Mach numbers with high negative incidence, or at low inci-
dence with very thick blades with high blade blockage and a small
throat area. Both cases give rise to an acceleration from a subsonic
flow to a Mach number of unity at the throat, so there are few
additional losses caused by this process, other than incidence ef-
fects.

Second, if the inlet flow is supersonic then the blade can also
choke at the throat. If the flow chokes at the throat, this implies
that first there is a detached shock from the suction surface of the
blade to upstream of the adjacent blade. The supersonic inlet flow
becomes subsonic at this shock and then re-accelerates to be su-
personic again at the throat. The relative total pressure at the
throat is thus lower than that at the inlet because of the losses
across the shock, and these losses are generally modeled as if they

occur in a normal shock.
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Third, if the inlet flow is supersonic at higher inlet Mach num-
ers �say M�1.2� choke may occur due to unique incidence. At
nique incidence, the flow in the inlet remains supersonic up to
nd including the throat. The flow is choked upstream of the
hroat by the supersonic expansion wave between the leading edge
f the upper blade and the suction side. Lower incidences are not
ossible than the unique incidence condition, as they would imply
higher mass flow than this choking mass flow. The exact mecha-
ism of this is explained by Freeman and Cumpsty �26� for axial
ompressors and has been extended to transonic radial compres-
ors by Lohmberg et al. �27�.

For choking at the throat, it is assumed that this is close to the
ompressor inlet and that there are no changes in relative total
ressure and temperature between the inlet plane and the throat,
xcept those which may occur in the detached shock. It is as-
umed that the detached shock is normal to the flow and that the
hock Mach number is the same as the inlet Mach number to the
lade row.

If the streamtube is choked at the throat, then this limits the
aximum mass flow on this streamtube and limits the maximum
eridional velocity of the flow leading to a lower limit on the

ncidence that is possible. Lower incidences are not possible, as
hey would imply a higher mass flow than the choking mass flow.
n this way this mechanism for choking also produces a lower
imit on the incidence as in the unique incidence condition.

At a throat, the value of the mass flow is checked during the
nner iteration for mass flow in the iterative procedure. If the local
alue is found to be above the maximum value of a choked flow,
hen a limit on the meridional velocity on this streamtube is ap-
lied. The choking of an individual streamtube then automatically
edistributes the mass flow across the inlet plane of a choked
ompressor blade row.

An example of this is given in Fig. 5. This shows the distribu-
ion of incidence and meridional velocity across the inlet plane of
n industrial radial compressor. The impeller was designed for an
xial inlet flow but used in a multistage machine with a radial
nlet, leading to a severe gradient of the meridional velocity across
he span due to the sharp inlet curvature. The calculation taking
ocal choking into account automatically limits the mass flow in
he outer choked streamtubes so that more flow enters the inner
nchoked streamtubes. The same effect can be seen in the distri-
ution of incidence in the outer streamtubes, which cannot reduce
elow that at choke.

Choking by unique incidence is also dealt with by applying a
imit on the meridional velocity. Assuming a correlation is avail-
ble for the unique incidence �iu� or that this is known from other
ata, then the maximum flow angle at the leading edge on a par-
icular streamline can be calculated from the blade angle. The

ig. 5 The effect of the choking model on the flow and inci-
ence distribution at inlet to a choked compressor
wirl velocity upstream of the leading edge is known and this
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allows the maximum value of the meridional velocity due to
unique incidence to be estimated from the blade inlet angle, as
follows:

cm,max = cu/tan��1� + iu�
for a stator and a similar equation with the relative swirl velocity
for a rotor. If this value is less than that which would occur due to
choking at the throat, then this is used to limit the meridional
velocity at the leading edge plane on this streamtube.

It should be noted that choking of any particular stream-tube
means that the meridional velocity of this streamtube is no longer
determined by the velocity gradient equation from radial equilib-
rium theory, but rather by the maximum meridional velocity de-
termined from the continuity equation. In some blade rows calcu-
lated with many internal blade calculating planes, the second and
even the third calculating plane may actually be upstream of the
effective throat, so an error results from the assumption that the
throat is at the leading edge plane. This is taken into account in an
approximate way by specifying the meridional location of the
throat together with geometrical throat area as input data.

7 Iteration to Pressure Ratio
The target pressure method of Denton is used to converge the

iteration to a prescribed pressure ratio. In this mode, the operating
point is defined by the expansion ratio for turbines �or pressure
ratio for compressors� between the inlet stagnation pressure and
the static pressure at the trailing edge of the last blade row on the
midspan streamline. At all other trailing edges a value for the
static pressure on the midspan streamline is estimated, whereby
these pressures are called the target pressures. These estimates can
be approximated, as they are improved during the iteration proce-
dure to be consistent with the mass flow through the machine and
the specified overall pressure ratio.

During the iterations the normal internal mass flow iteration
procedure is used at all planes which are not trailing edges, in that
the meridional velocity distributions are obtained from Eq. �1� to
satisfy continuity with the current value of the inlet mass flow. At
trailing edge planes a different procedure is used. Here the me-
ridional velocity on the midstreamline is adjusted not to match
continuity but to achieve the target midspan static pressure. The
difference between the actual pressure and the target pressure is
used to correct the estimate of the meridional velocity on these
planes as follows:

�cm = −
ptarget − p

�cm
cos2 �

This can be derived from the Euler equation, using the assumption
that a small change in meridional velocity does not change the
losses or the relative flow outlet angle. The corresponding mass
flow at the trailing edge is then found by integration of Eq. �1�. In
the first instance, there is no attempt to satisfy continuity with the
inlet mass flow. The program continues for a maximum number of
outer iterations, at which point the target pressures will have been
achieved with sufficient accuracy or fewer, if the target pressure
has already been achieved.

At this point the estimates of target pressures and the inlet mass
flow are revised. The estimates of target pressure are adjusted to
improve agreement between the mass flow through the next
downstream trailing edge and the current estimate of the inlet
mass flow, using the simple correction formula

pi−1
N = pi−1

N−1ṁinlet
N−1

ṁi
N−1

where N is the number of the outer iteration. The change in target
pressure is relaxed to ensure stability. The inlet mass flow is then
updated to be that through the first trailing edge plane. The inlet

mass flow is also relaxed.
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In a choked compressor blade row, the losses within the bladed
egion are no longer a function of the mass flow, which is fixed,
ut become a function of the back pressure. This is rather like the
ituation in a choked inviscid 1D converging-diverging Laval
ozzle, where the back pressure determines the location and
trength of the shock, and the level of losses that occur are a
unction of the shock strength. At lower back pressures in a 1D
aval nozzle the shock moves backward in the diverging channel
nd becomes stronger with more losses at the same time. The
hock losses in a choked compressor blade row are modeled in a
imilar way.

The equations given above are first used to identify the maxi-
um mass flow at the throat plane. If the flow is choked and the

alculation is at a specified pressure ratio, then additional losses
eed to be generated within the blade row so that the mass flow at
utlet �where the target pressure is specified� matches the choked
ass flow. Without additional losses the outlet density would be

oo high, and the mass flow on the blade trailing edge would be
oo large. The additional losses are distributed evenly across the
pan and uniformly downstream of the first calculating plane
hich is unchoked. In each iteration, the additional losses are
etermined from the condition needed to correct the mass flow at
he trailing edge. This algorithm assumes that when the target
ressure is achieved �dp=0�, then from the Gibbs function we
ave

Tds = dh − vdp, ds = dh/T = cp�dT/T�
he equation for an ideal gas can be differentiated to give

pv = RT,
d�

�
=

dp

p
−

dT

T

nd if dp=0 these equations can be combined to give

ds = − cp�d�/��
he error in the density is assumed to be related to the error in the
ass flow at the trailing edge, so we obtain that the additional

osses that are needed to match the mass flow at the trailing edge
ith the choked mass flow at the inlet can be estimated from the

railing edge mass flow error as

�s � − cp��ṁ/ṁ�
he error in the mass flow at the trailing edge is thus used to
pdate the losses within the blade row until both the mass flow,
nd the target pressures at the trailing edge are correct. In this
rocess the change in the additional losses is damped in each
teration. The additional losses in this process are determined by
he program and are in addition to any losses that may be specified
y the user or determined by the specified correlations. Few en-
ineers are aware of this feature of choked flow calculations,
hereby the level of losses are determined directly from the pres-

ure �or density� ratio rather than the detailed aerodynamics of the
lading.

Equation of State
Internally the losses are defined via a change in entropy using

n entropy loss coefficient, and the total enthalpy is determined by
he Euler equation, so that the form of the equation of state that is

ost useful is

p = f�h,s�, � = f�h,s�
any loss coefficients used in turbomachinery correlations are

efined not as entropy loss coefficients but as pressure loss coef-
cients, so the code internally converts these to entropy losses so

hat the operation with the equation of state always involves the
arameters h and s, and the subroutines involving the equation of
tate remain relatively simple.

The forms of the ideal gas equations used by the throughflow
ode can be derived by integration of the Gibbs equation for an

deal gas, and lead to the following equations:

31021-8 / Vol. 132, JULY 2010
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p2/p1 = �h2/h1��/��−1�e�s2−s1�/R

�2/�1 = �h2/h1�1/��−1�e�s2−s1�/R

The Gibbs equation can also be integrated to find the equation for
the pressure in an incompressible calculation, as follows:

p2 − p1 = ���h2 − h1� − cpT1�e�s2−s1�/cp − 1��
together with an equation for the density, which is constant.

In the case of real gases, the real gas properties are currently
being incorporated via tables of values rather than as equations of
state, as this procedure is only needed once for all possible gases.
For reasons of consistency with other codes, the real gas data are
provided to the code in the form of tables of properties in the form
of

h = f�p,T�, � = f�p,T�
in a standard file format known as real gas property files �.rgp
files� within the ANSYS CFX software system.

At each step in the streamline curvature iteration procedure the
values of h and s are updated from the losses and the Euler equa-
tion. The throughflow code then corrects the other gas properties
to find better estimates from the real gas tables. In this process the
values of p� and T� are first taken from the previous iteration �here
denoted by an asterisk� and corrected to give an improved esti-
mate consistent with h and s.

First the value of T� consistent with the new value of h and
earlier value of p� is found from table of properties such that

h = f�p�,T��

Then a new value of s� consistent with T� and p� is found from

s� = f�p�,T��
together with a new value of density �specific volume� consistent
with T� and p�

v� = f�p�,T��
Finally, the Gibbs equation is used to find a better estimate of the
pressure p� as follows:

Tds = dh − vdp, dh = 0, dp = − Tds/v

p� = p� − �T�/v���s� − s�

These steps could then be repeated to convergence, but as this
process is embedded within the streamline curvature iterations, it
automatically converges on the correct value when the whole so-
lution has converged.

9 Meanline Calculation
A novel feature of the code is its ability to run as a quasi-mean-

line method. In this process the spanwise velocity gradient �Eq.
�1�� can be multiplied by a user-specified factor less than unity. If
a factor of zero is used, then the code effectively becomes a mean-
line code with no spanwise variation in meridional velocity. Other
parameters, such as the blade speed, still vary across the span, so
it is not exactly a mean-line code, but is close to this if combined
with the use of correlations operating only along the mean stream-
line.

Clearly as a mean-line code it has a large overhead in compu-
tational effort, but this has advantages if only one code needs to be
developed and maintained and ensures consistency between
mean-line and through flow approximations. This feature can also
be extremely useful for debugging and for analysis of difficult
cases, as it allows the program to avoid divergence due to high
spanwise velocity gradients during early iterations. Even very dif-
ficult cases converge readily with a reduced spanwise gradient.
This ensures that the axial matching along the mean streamline of

the blade rows is approximately correct, and when converged it is
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ossible to approach the correct solution with the correct radial
istributions by slowly relaxing the value of the velocity gradient
ultiplication factor toward unity.

0 Validation and Verification
The code has been verified by calculation of a range of simple

ases with analytical solutions, and validated by comparison with
ther throughflow codes, where possible.

A streamline curvature code cannot be expected to reproduce
he fine details of any real flow, so measured flow distributions
ave not been used to validate the models of the code. In many
ases predictions of the code have been compared with 3D CFD
imulations, as shown in the examples already given in Figs. 2
nd 4 above. Figure 6 compares the 3D CFD �ANSYS CFX� and
hroughflow �VISTA TF� predictions of the mean meridional veloc-
ty in a mixed flow pump with an axial diffuser operating close to

Fig. 6 Comparison of the meridiona
with a 3D CFD calculation „ANSYS CFX

ig. 7 Comparison of the meridional flowfield of a mixed flow

urbine compared with a 3D CFD calculation „ANSYS CFX…
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its design point. In this case the impeller simulations used a slip
factor correlation, and the losses are uniformly distributed. Figure
7 shows a further comparison of the mean meridional velocity
distribution for a mixed flow radial turbine. In this case the outlet
flow angle has been determined from the cosine rule with a cor-
rection for the underturning of the tip leakage flow, and losses are
again uniformly distributed. The level of agreement in both cases
is extremely good, especially taking into account a uniform dis-
tribution of losses were used, and identify clearly that the tool is
sufficiently accurate for preliminary design.

11 Conclusions
With suitable empirical correlations, the new throughflow code

is able to closely match 3D CFD simulations for radial and mixed
flow machines. Owing to its speed �seconds rather than hours�,
and ease of use, it is eminently suitable for preliminary design
calculations. Clearly the code cannot replace more modern 3D
methods in the later detailed design, but it has an important role in
an integrated turbomachinery design process �see Ref. �28�� and in
automated preliminary design optimization �29�.

Newly developed features of the current code are as follows:

• the general methods for including losses with entropy loss
coefficients and dissipation coefficients

• a new diffusion-based spanwise mixing model, which adds
relatively little additional complexity to the basic method

• iteration to pressure ratio for compressors
• the models for choking of compressor blade rows taking

account of the redistribution of the flow due to choking
• the ability to use the code as a quasimean-line code
• the implementation of different equations of state for liq-

uids, ideal gases and real gases

It is currently planned that the code will be integrated as part of
a future release of the ANSYS BLADEMODELER software.
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omenclature
c � absolute flow velocity

cd � dissipation coefficient
f � mixing factor

Fd � dissipation force
h � specific enthalpy
iu � unique incidence

i , j � indices �calculating planes and streamlines�
m � distance along meridional direction
ṁ � mass flow rate
M � Mach number
N � number of outer iteration
o � throat width
p � static pressure
P � parameter �ht, rcu, or s�
q � distance along calculating plane
T � temperature
r � radius

rc � radius of curvature
R � gas constant
s � specific entropy
S � entropy
u � blade speed
w � relative flow velocity
z � axial coordinate
Z � number of blades

reek Symbols
� � relative flow angle
� � blade lean angle

�in � blending function at inlet
�out � blending function at outlet

	 � diffusion coefficient
� � angle between streamline and plane
� � circumferential coordinate
� � density

ubscripts
m � meridional component
t � total conditions
u � circumferential component
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